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Abstract—The isothermal infinitesimal bending theory of isotropic Cosserat surfaces with P directors is developed
based on the work of Green et al. Matrix notation presents this theory in a tractable and straightforward manner.
Upon restricting the theory to initially plane surfaces, the theory uncouples into extensional and bending portions
and a two dimensional matrix form of Stokes-Helmholtz decomposition theorem is applied to the bending
theory. Four second-order partial differential equations in terms of four matrix stress functions are thereby
obtained and all kinematic variables, stress resultants and higher order stress resultants are expressed in terms of
these stress functions. This theory is applied to the pure bending of an elastic plate and a comparison is made
with the three dimensional elasticity theory counterpart.

1. INTRODUCTION

SINCE the late 1950°s there has bgen a revival of interest in techniques, the Cosserats [1]
being among the original proponents, in which any body with a preferred orientation may
be described by a position vector to a point in the body and another vector, called a director,
associated with each point, which gives each point in the body six degrees of freedom.
The director approach to the problem of describing an elastic continuum using two
dimensional parameters was reinstigated in 1958 by Ericksen and Truesdell’s [2] multiple
director approach to the exact theory of rods and shells. Green, Naghdi and Wainwright
[3] developed a general theory of a Cosserat surface utilizing fully consistent dynamical
and thermodynamic principles of continuum mechanics and then considered nonlinear
elastic, isotropic nonlinear, and isotropic linear Cosserat surfaces. The restriction contained
in the Cosserat shell theory section of the previous paper, namely that of the director
remaining normal to the shell surface throughout its deformation, was removed by Green
and Naghdi[4]. In [5] the same authors discussed the linearized theory of an elastic Cosserat
surface in relation to the theory of shells regarded as three dimensional bodies. The com-
patibility relations for a Cosserat surface were obtained by Crochet [6]. Naghdi [7] used
Cosserat surface theory to solve the torsion of a circular cylinder while Wenner [8] derived
the solution to the torsion of a cylindrical Cosserat shell. The linear theory of an elastic
Cosserat plate was derived by Green and Naghdi [9] who then solved the problem of the
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bending of an infinite plate with a circular hole using this theory. Excellent review articles
pertaining to the nonlinear theories of deformable surfaces are presented by Green and
Naghdi [10, 11].

In several recent papers, which will be referenced extensively, Green, Laws and Naghdi
[12] and Green and Naghdi [13] obtained a general nonlinear, thermodynamical theory of
rods and shells using a Maclaurin series expansion for the kinematical parameters in terms
of an infinite number of directors. Following their derivation of the equations of motion.
with the help of invariance conditions under superposed rigid body motions, and their
derivation of constitutive equations. Green, Laws and Naghdi [12] proceeded to make
systematic approximations in order to recover the theory given by Green, Naghdi and
Wainwright [3] who utilized one director.

In Section 2 of this paper a summary of the nonlinear and linear kinematics as well as
the equations of motion of the theory of a Cosserat surface with P directors is presented.
The constitutive relations for an isothermal, linear, elastic plate which initially is homo-
geneous, free from curve and director forces, and in a state of rest, are derived from a free
energy function describing a holohedrally and transversely isotropic plate in Section 2.
Matrix notation is reverted to at this stage. After imposing the restrictions associated with
the assumption of rectangular Cartesian coordinates in Section 4. the uncoupled field
equations for the extension and bending theories are categorized prior to the application
of the two dimensional Stokes-Helmholtz decomposition theorem to the transversc
deflection theory. A simple and concise system of equations, governing four stress function
matrices from which all stress resultants and kinematical variables are obtained, is presented
for the bending theory. In Section 5. this system of equations is solved for the pure bending
of an elastic plate and a comparison between the solution for the bending problem and its
elastic counterpart is discussed.

Several three dimensional theories of plates are given in the literature, c.g. {14 16].
For example, A. 1. Luré [14] writes a functional expression for the displacement field in
terms of the two dimensional gradient operator and the thickness coordinate. This differs
from the method used in the present paper where a power series expansion in terms of the
thickness coordinate is employed.

2. KINEMATICS AND EQUATIONS OF MOTION

Points of a three dimensional continuum b, will be defined by a convective coordinate
system 0', 0%, 0%, and the position vector to a typical particle will be denoted by

¥ = 0N 0%, 0% ). 2.1

The natural base vectors and their reciprocal set at points of the continuum at time ¢ are
denoted by g; and g respectively, where the range is denoted by Latin indices having the
values 1, 2, 3. Whenever it is convenient 0 will be replaced by ¢ and Greek indices will
denote the range of values 1, 2. The notation is essentially that used in [3,9, [2. 13,17, I8].

The parametric equation ¢ = 0, defines a surface s. in space at time ¢, whose position
vector to any particle of s is designated by

1
b

= w08 0% 0 = r*0', 020, 0. {

+ Three dimensional space vectors will be denoted by 7" and matrices by boldface.
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The natural base vectors of the tangent plane of s and their reciprocal set are denoted by
a, and g* respectively, while the unit normal to s is g3 = ¢*. Some of the basic geometry
of the continuum b, and the surface s, which is embedded in b, will now be recalled, namely

. — 1
g[ = .’:*7“ Gy = Laas d; = Tgaﬁgar)(g[ia
gij::gi'gj; auzgi QJ?
S I (2.3)
gh=g.gs d=d.4
g = detg;;; a = deta;; = det ay,

where ¢ = (\/1/a)e*’, &’ is the two dimensional permutation symbol and *,”” denotes
partial differentiation with respect to #. The connection coefficients of b and s are denoted
by T and T, respectively. Thus

8isj = Fi‘jgm @i = T (2.4)
where I'}, are the Christoffel symbols of the second kind based on the metric a,4, T3, = b,,
are the coefficients of the second fundamental form, I'4, = —b% = —a**h,, and T'3, = 0.
It should be noted that since the coordinate system is not normal convective,

T, # I(07,0,1). If p = (07, 0%, 1) is any surface vector and ¢* = p*(6*, %, 1) is any contra-
variant surface vector, then write

Uo = V'sain U5 = 0%, (2.5
where from (2.4}

vy = v, + Tk,

v = v+ T + Tigr™,

and |, denotes covariant differentiation with respect to the surface coordinate 6, based
on the metric a,,.
The change of base from b to s will be denoted by

g = W'a;, a4 = g, iy = whel = o 2.7)

where ¢/ and g/;, inverses of each other, are sometimes called shifters and are discussed, for
example, in [17] and [18] and 5} is the Kronecker delta. From (2.3) and (2.7) follows

kL
gij = Wi Wy gy,

and hence (2.8}

po=detpy = /(‘g)
a

The shell concept may be developed by assuming that the continuum is bounded by
the surfacest

&=a, &=, {a <0 < p), (2.9)

T See Ref. [12] for further restrictions on these boundary surfaces.
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which are such that s lies entirely between them, and the surface
10, 6% = 0. (2.1

The position vector r* is now represented by a series expansion about the surface s. in the
form
X0, 0%, 1) = r0. 0% 1)+ Z VA0, 0%, 1), (2.11
N =1

where the vector functions dy are called the directors. It is assumed that the positive integer.
P 1s such that either the remainder of the series is zero for finite P or when P tends to
infinity the series converges. Although the formulation is primarily that of Green, Laws and
Naghdi [12], only in the case when P tends to infinity the form given in [12] is recovered.
The value of P, which is the number of directors in the expansion (2.11), is arbitrary and the
question concerning the approximation when a remainder term in the Maclaurin series is
needed is considered to be beyond the scope of this paper. However, it is hoped that the
proposed theory may be able to shed some light on the question of approximations in the
theory of plates and shells.

Some of the basic kinematical results as derived in [3] and [12] will now be recorded.
From (2.3) and (2.11) it follows that

TS
,.<
If

i
B

+

I
dw
P

=
=
=

(2.12}
g3 = Z NEY Ty

N=1

|

The shifters with the aid of (2.7) and (2.12) become

,
W=t Y S, = Y NEY (2.13)

N=1 N=1
where, from (2.6}
(2.14)
and

dy s, = dul, —bidi = Ay,

8%
——
n

3. _
d.’\'u — d’\ ?7+b[1 V - /'\ 2t

In the undeformed configuration the position vectors to a typical particle, denoted by
R*(0', 6%, ¢), and to the particle on the surface S, obtained from the typical particle’s
position by setting ¢ = 0, denoted by R(0)', 0), are related through the expansion (2.11)
evaluated at time equal to zero. Thus

R*(0', 0%, &) = R(O', 0°)+ Z V0L, 0%), (2.16)

where Dy are the initial undeformed directors. Similar expressions to those contained in
(2.3)42.8) and (2.12)(2.15), hold in the undeformed configuration with majuscules
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replacing their miniscule counterparts, 7 replacing u7, f:;a replacing I, and "
replacing “;,”.

The position vectors in the deformed and undeformed configurations are related to the
displacement vectors by

r* = R*+U% r=R+U, (2.17)
where
U* = UG, U="U4, (2.18)

are the three dimensional and surface displacements respectively. From (2.11), (2.16),
{2.17) and (2.18)

U*= U+ i NG, (2.19)
or in component form o
U*igl = U%\il ENGE, (2.20)
where
On = 0kd; =dv—Dv, Ok =dnai. 47— Dk. (2.21)
As in [3] the extended definitions
Oni = dni— Dy, (2.22)
UNia = @i - Anoa— Ai - Drow = dnisa— Dyvitas (2.23)
as well as
28,5 = Gup— A, (2.24)

are introduced. It is of interest to note that although Jy; transforms as the components of a
covariant vector, it is not associated with a surface vector.

Attention is now restricted to the kinematical theory of infinitesimal displacements.
The displacement of the surface s and the director displacements are given by (2.18), and
{2.21), respectively. Upon linearization of (2.21) through (2.24) in a manner similar to Green,
Naghdi and Wainwright [3] the following linearized kinematical results are obtained

KNpo = O oy - As+ Uys. Dnoy

- . (2.25)
= Onpg gt Ui pDy iqs
%N3a = Onoa- A3— U347 Dy
- (2.26)
== 5N3 R U3 :VDK' as
zeaﬂ = Aa - (.{,,98‘}_‘4{1 . Q'm
(2.27)

il

U,p+ Uy,
In addition the two forms of the director displacement Jdy; and Jy; are related through
One = On,—(UP wDnpt+ Uz Dys),

o (2.28)
53\'3 == ()N3 + U3 :’GD;\’;; .
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Expressions for the three dimensional strains in terms of surface and director displace-
ment gradients may be derived utilizing (2.19) provided that the differentiated series either
exhibits equality for finite P or converges uniformly when P tends to infinity. The con-
tinuum’s linear strain components are given by

2y =G UF G+ Gy LR {229

which upon using (2.5), (2.7), (2.17), (2.19) and (2.29), become

r P :
2'}’#} = lzct:!k Uk :/1+ Z Lfl\(st :/3 +,&/}k L;k:1‘§‘ 2 éN(SNk :a), (., 3()
NTh NT
27,3 = g} Z NEY™ 15‘“+ﬂ;{‘(Lk . V Vo x)’ (231}
P o
yas = A3 Y NEY oy (2.32}
VT

A simplification of the kinematics occurs when the following identification of the

initial directors is made
D, = 4;, Dy =0 forN > I (2.33)

This choice corresponds to describing the initial configuration by families of parallel
surfaces. Thus the convective coordinates ¢ are normal coordinates in the initial con-
figuration and the shell is of uniform thickness in this configuration. With this interpretation
the undeformed configuration’s shifters from (2.13) and {2.33), become
il = ot — Bic. =0

X

, (2.34)
gy =0, ay o=
which, along with (2.33}, reduce the linear kinematical relations {2.20), (2.251-(2.28) to
r p
U~ U B¢ = Ul + ENSL U= U3+ Y Mo (2.35)
Now N=1
511 = (511'“ {/’3:3“ 51\;; == (sf\’u for N > I., (S]\‘3 = (SN.;: {236)
Hipa = 511;:1" v’ :/gBm. Anpgax = (S_,\vf; ly for N > 1, (2.37}
Ay — 5]3 Lt U, I;XB-N. Hnix & (5;\-3 s for N > 1 {2.38)
Three dimensional strains (2.30} (2.32), are also reduced by (2.33) and (2.34) to
P
2’;‘1} = 2({‘3{5—‘!— 2 EN(SNI:{;%‘(j\gﬁ :,_(]
Nw=1
P ) . ~
— B, y+BiU, ) — Y EVYYBON, 15+ Bidwy ).
N=1
2’}!13 = ¥ Lt Z ()N\ 1+NC IS:NI_NBICN()’V/)
N=1
Yz & Z NGV oy, (2.39)

N=1
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Returning to the consideration of the nonlinear theory, the equations of motion for the
shell may be taken as those given in [12, 13]. The same form of these equations may also
be obtained by integrating the equations of motion across the thickness, both prior to and
following multiplication by powers of the thickness coordinate. In order to record these
equations for future use the following definitions and notations are required. Let p be
the outward unit normal in the surface s, to a curve of the form (2.10) with ¢ = 0, and ' be
the stress vectors for each coordinate surface per unit area of the deformed body, with
shifted stress tensor components given by

t'=d'g, {2.40)

where ¢/ is, in general, a nonsymmetric tensor related to the three dimensional symmetric
contravariant stress tensort %, through

ot = iy (2.41)

The definitions of stress resultants are given by

B
N* = Niog, = J e de, N = N,, (2.42)
. B
Mi= Mia = | kCos My= M, (243)
i B
my = mha = [ Ve P ac (244
‘ y
b = pFia = | pPulf*-chdép, (245)
. B
pLy = pLia; = | puENyt - dely, (2.46)
where
) E=f
p=Era=u’ (2.47)
¢ =
; N3 <=4
Iv = lvai = u&°e’ | (2.48)
¢ =ua

In the preceding equations, J* is the body force vector, ¢* is the acceleration which contains
both the surface and all director accelerations and p* is the density.

Thus, in terms of the definitions (2.42)(2.48) the equations of motion for the shell
may be written as

N+ pF = Q, (2.49)

MRla+pLy—my = 0, (2.50)

t This interpretation of t* agrees with Truesdell and Toupin’s [19], Section 203, but not with Green et al.’s.
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and

P

P
d, x N+ Z Ao X MY+ Z dvxmy = Q. {

N=1 N=1

8%

Si)

The scalar forms of the equations of motion (2.49) and (2.50) utilizing (2.5) and (2.42) to
(2.46) are

N2+ pF = 0, (2.52)
MY+ pLy—my =0, {2.53)

while the scalar form of (2.51), using (2.14), (2.42), (2.43) and (2.44) along with the properties
of cross-products between surface base vectors becomes

exNPE =0, or N = N, (254
and
P P
N¥+ 3 (dimy—dimp)+ ) (dis, MY —di,MR) = 0, (2.55)
N=1 NT
where
»
N#* = NB2_ Z (d%: MG + dkm3y). (2.56)
N=1

3. CONSTITUTIVE EQUATIONS FOR A LINEAR ISOTROPIC ELASTIC
PLATE

Attention is now restricted to the isothermal infinitesimal deformations of an elastic
Cosserat plate with P directors, which initially is homogeneous, free from all curve and
director forces and in a state of rest. However, the constitutive equations to be derived in
this section may be applied to thin shells if all terms of O(#/R), h being the thickness and R
the smallest radius of curvature, are neglected. Further discussions of this property have
been given by Green and Naghdi [5]. With initial directors as assumed in equation (2.33),
the Helmholtz free energy should include terms involving D, :; which is the negative of
the initial coeflicients of the second fundamental form B, . If, however, the initial surface s 1s
assumed to be a plane, the value of all kinematical variables at time ¢t = 0 is zero. For the
above reasons it is sufficient for the Helmholtz free energy per unit mass pyA. to be expressed
as a quadratic function of e, xy;, and dy,, where pq is the density per unit area of the
initially undeformed plate. Hence the free energy

PoA = poAless. *yiz. Oni; A, (3.1)
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may be written as

poA = CF% e+ Z 2O N g rys T Z sCH%eupnys
1

NM=

P
+ Z 1CNM%N3a%M1}y+ Z LC¥7 e,50n,+ Z 3CNﬂeB”N3y

N.M=1 N=1

P P
+ ZCiSnatrapy + Z 1 CdnaOmp+ Z 2CnN 33
NM=1 NM=1 NM=1

P

P
+ Z 3CNM5N1“M3[1 + Z ¥ €,40N3 + z 5C§/ﬁM%Naﬁ5M3
M= NM=1

P P P
+ 2 1ChmOnOnms+ Z 2CimtN3Oms T+ Z CnmON30m3s (3.2)
NM=1 NM=1 NM=1

where the coefficients are constants which satisfy symmetry conditions similar to those

given by Green, Naghdi and Wainwright [3]. The plate is now assumed to be isotropic

with a center of symmetry and thus all coefficients of odd order must vanish. In addition,

remaining coefficients must be homogeneous, linear functions of products of A*. In order

to imitate the symmetries associated with a plate which is transversely isotropic with

respect to the normal to the surface S, the free energy must remain invariant under the
transformations

5Naz H(wl)NéNm
On3 —’(_1)N+15N3, (3.3)
U3 “>—U3.

For ease in the further development of this theory, matrix notation is now introduced
and, in what follows, matrices will be designated by boldface. The kinematical variables
Oni» #nig are now decomposed into P/2 x 1 matrices, where P is an even integer, in the follow-
ing manner. Kinematic quantities which involve the odd values of dy, and even values of
on3 will be designated simply by 8; and »x,, ; that is

x = (511: 531’ 5501’ L] 5(1’— 1)1)»

6T - (5237 5439 6639 ey 5}’3)9
. (3.4)

’flz[}a %31ﬁ’ %5113’ LRI %(P— 1)1[3)’
= (X230, X432 X630 - - - » XP3a)s

and kinematic 9uantities which involve the even values of dy, and odd values of 3y will
be denoted by 9, and #;,; namely

= (521’ 54a7 561’ e 51”1)’

3§ = (513,533,553, . --,5(P—n3),
(3.5

5T 5 N N
Xop = (%245, Haug, Xoaps o s Xpaph

ST _ (. N
B3, = (132, %335, X530 - - s H(P— 1)30)
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In the above superscript T indicates the transpose and P in (2.11) 1s restricted to an even
integer so that §; and §; have the same number of elements. However, only a slight modifica-
tion is needed in what follows if one wishes to consider P as an odd integer. Imposing the
restriction (3.3). as well as the condition of holohedral isotropy. on (3.2} the algebraic
expression for the free energy may be written as the sum of two terms : one which represents
the transverse deflection or bending theory poA’, involving the odd values of ¢, and even
values of dy;. and the other portion which represents the generalized plane stress o
extensional theory poA, involving the even values of dy, and odd values of 3y. Thus the
free energy may be expressed as

Pod = poA' + poA. {3.01
where
poA = FAP8]038, + 5030149,
+ 3%l AP A +og A AP v, A AP s {3.7)
+ 3 A pgx sy + AP A 205 + AP 305y,
and

poA = Hoy AP A7 +ay( A% AP + A 4P)]e e, s+ FAS] B3dy +503B.8,
3R B AT AT 4 P AT AP 1 B AT AP IR+ FARE B+ AT ISy
+ e[ BloA™ AT + B (AT AP+ 4 AP)|R, 5+ AR 3B 28

+ AR, sy (3.8)

The material coefficient matrices Bo, o, P11 are P/2x | matrices, o], = Byr.a1; = By
and all other material coefficients are P/2 x P/2 symmetric matrices. Since the free energy
is positive definite these material coefficient matrices have further restrictions. It 1s easily
shown that the inverse of certain material coefficient matrices, which are used, exist.

The bending and extensional constitutive equations may be derived from (3.6), (3.7}
and (3.8) by using partial derivatives of the free energy equivalent to those given by Green,
Laws and Naghdi [12]. Use will be made of the notation exemplified by d5,4" as indicating
a P/2 x 1 matrix obtained by taking the partial derivative of the free energy with respect to

each dy,, N = 1,3,5,.... P—1. Thus the constitutive relations are given byt
m* = pols, A = A%a38;+ A%ay %55, (3.9
m’ = pols, A" = dad3+ Aot 22y, (3.1
M = pody. A = [ AP AT+, A7 AP o, 470 AP ot 5+ A%t 1285 (3.11)
M3 = pody A = A%agny+ A", 8 (3.12)
and
N#% = pol,, A = [0, AP A? +ay(A AP+ A APT)]e,,
+APBES +[BloAY AT + B (AT AT+ AP AP, (3.13)

+ By the notation (., it is understood to mean Hé.,, +¢.,.). since ¢,y is symmetric.
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M = pols. A = APP3ds+ AP, 3, (3.14)

M = pods A = Buds+ A% e, 5B+ APl 2% 5. (3.15)
M = pgo, A = [BsAP AP+ A A + B, AP AP R 5+ [B1o AP AT

B, (A A 4 AP A%%)]e. s+ AP, 185, (3.16)

M3 = pod,, A = A Peis;+ APBT138;. {3.17)

The stress resultant P/2x 1 matrices in (3.9%{3.17), recalling the renumbering given
by (3.4) and (3.5), have terms consistent with the interpretation of the kinematical matrix
with which each partial derivative of the free energy was taken. 1t should be noted that
because of the choice of initial directors and since a plane surface is being considered, the
equations of motion (2.54) and (2.56) specify that

N# = N'## = N'F* = NP2 (3.18)

and hence the constitutive equation (3.13) may be utilized to describe the symmetric N*£.

4. DECOMPOSITION OF BENDING THEORY

The basic equations of the linear theory of an elastic Cosserat plate with P directors
under static loading are now recorded in matrix notation. The kinematical relations for a
plate will now be referred to rectangular Cartesian coordinates and are obtained from the
equations contained in Section 2 by setting

A* =5, Th=0  B:=0. (4.1)

Using standard procedures, for example by replacing dy and b’ to the first order with
Dy and B! respectively, the equations of motion may be reduced to the linear case, from
which the equations of equilibrium referred to rectangular Cartesian coordinates follow.
Similarly, the constitutive equations of Section 3 may be written in rectangular Cartesian
coordinates by the use of (4.1).

Converting the kinematic and equilibrium equations into matrix form by using the
matrix interpretations of the variables given in the previous section, it is observed that the
field equations uncouple into those for generalized plane stress and those for transverse
deflection. At this point it is considered instructive, and for ease of future use, to collect
all pertinent equations into the previously mentioned two categories and to list them in the
following way.

(a) Extensional theory

§i = Sn
= 4.2
ilz = 81"1 = Snm (
2’?(1& = Saaﬂ +S/}sa’
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Npsoat+pg = 0,
M., +1—m; = 0, (4.3)
wa = N/;zl

Ny = 010,584, + 20205+ 0,50 3 + 3,470 %, + 2BT1 %y
m, = B3, + Pk,
iy = Buds+e, Bo+ Blo%,.. 4.4
Mzﬁ = ‘Szﬂﬂsiw + Bb’?xﬁ + ﬁ?iﬁx + 5:136‘/7”} o+ 291,331 1+ 51/&3; 283 s
M;, = g3, + B35,

(b) Bending theory

8, = 8, Uyt
33 = 33,
Kap = Xiap) T Xyap)- .
1R N s (4.5)
Hiapy = 3(000p+04.,) = Hdyp+8y,.)0— Us .y,
Ky = 1By 5 —Bpn) = %’(63’{1—8{3 aah
Ay, = 83,55
Nisutps =0,
M.+l -m; = 0. 4.6
N, —mlg, =0:
m, = o030, +0t; 3%;,.
m; = o085 +oi,%,..,
My = Oup 5K+ [0 -+ 00 12, + O 283, 4.7

Mgy = o6 —0t7 )%
IVI}J = a8x31'+nd{‘,ﬁ6a;
where the notation £y has been incorporated to signify a P/2 x | matrix, every term of which
is zero, except the Nth, which is unity. Also in the above equations
M., = Mg+ Mg, 4.8)
where
M = 5(Mys+ My,), My = HM,; —My,), {4.9)
and Ti and ; are surface moment P;2 x | matrices consistent with the above separation.
The three dimensional displacement field given by (2.35) with B = 0 may then be
calculated from
Ut = U, +5"8,+7"3,,
Ut =Us+n'8, +C183~

{4.10)
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where
QT = (é’ 53’ 657 ey ép_l)ﬂ
" = (&%,8%¢8..., 80

Again with the understanding discussed previously the three dimensional strains may
be derived from (2.30)-(2.32) as

4.11)

Yap = €qpt CT"(«&)**"IT’?(@;:;,
2:‘)0!3 = g:riisa +nT83 m+§rs3 s +ﬂ;r3sgga (412)
Y33 = 1383 +C»T333-

All further considerations are restricted to the infinitesimal bending of an isotropic
plate which is in equilibrium. In a manner similar to that of Green and Naghdi [9], the
Stokes—Helmholtz decomposition theorem is applied, in its two dimensional form, by
expressing &, as

8, =@, ,+eu0,,. (4.13)
From (4.5) and (4.13) it follows that
8, = Loxt+ Vg, (4.14)
where
Y =0—U;g. (4.15)
Substituting (4.14) into (4.5) then
Rap) = Koup + HEqVrp + Ep Wy, (4.16)
Hiap) = HewNop— ep Ve = 6,2V, (4.17)
where “A” = “, . is the two dimensional Laplacian operator. Expressions for the con-

stitutive equations in terms of the P/2 x 1 matrix stress functions @, \, x, and the P/2 x 1
matrix director displacement 8, are obtained by substituting (4.13), (4.16) and (4.17) into
(4.7}, thus

m, = o3(@.,+ W) +01 383,45 (4.18)
my = o8 +ai,Ay, (4.19)
M) = 0s0apAY +01 202505 + @6 +07 1 Xoap +HExWyp + £5500)} (4.20)
Mg = 36,5006 —7)AY, 4.21)
M, = 2583, +aT5(@., +Ex50.). (4.22)

Before substituting these stress resultants into the equilibrium equations (4.6) the Stokes—
Helmholtz decomposition is applied to 1, so that

lcc = fscz +8af5g3ﬁ . (423)

Substituting (4.20), (4.21), (4.23) and (4.18) into the equilibrium equation (4.6),, of the
form

Maﬂ,,;+l,—m, = 0, (424)
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it yields
A —00 + (02— 3)05 +1], = &, [0 —a A — g, {425
where
o =05 +a(,+a-. (42()}

Equations (4.25) are the Cauchy—Riemann conditions of the bracketed terms and hence
these terms must be harmonic. Using a technique similar to that described in Green and
Naghdi [9] the bracketed harmonic terms may, without loss in completeness, be taken to
be equal to zero, that is

A —30+ (0t 5 —0;3)0;+F =0, (4.27%
aAY—a+g = 0. (4.28)
Upon substituting (4.22) and (4.19) into the equilibrium equation (4.6),, of the form
M+l —my = 0. (4.29)
it follows that
otgAS 3 — 0,8 +a] ;A —al,Ax+1; = 0, (4.304

while, by substituting (4.6); into (4.6), and utilizing (4.18), yields
8{[&3Afp+d13A63]+[)3 = 0. ‘43]}

The basic equations governing @, %, 65 and \r are (4.27), (4.28), (4.30) and (4.31)and all other
quantities are then determinable from (4.13) through (4.22).

Alternative forms of the basic equations may be obtained as follows. Eliminating x
from between (4.27) and (4.30) it follows that

{agA —ay +d’{7_a" l(dlz —'a13)}63 + {a’{}A “’d{za la;§}¢ +a'{2d7 lf+l3 = {. (432)

Since in (4.28) a3 and a4 are square, real, symmetric and &, is positive definite, then from
standard reductions of simultaneous quadratic forms, e.g. Perlis [20], and with

v = PY, Pla.P = L. P'a,P =2 G =P'g, (4.33)
equation (4.28) may be written in the form
A¥Y LY +G = 0. (4.34)

In (4.33) and (4.34), 1 is the identity matrix, P is a real nonsingular matrix independent of
0! and 6% and & is dia.{4,,. .., Ap2} where the Ay are the characteristic roots of the poly-

nomial equation
det(Jot, —at5) = 0. (4.35)

Eliminating y from (4.15) and (4.27), results in
AU381 = (IA_a - 1&3)(‘) +o 1((112 —0y 3)63 +a lf. (43())

Hence, the alternative set of basic equations is (4.31), (4.32), (4.34) and (4.36). This decom-
position has been made without prior approximations in the constitutive equations, and
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thus either of the basic sets of equations represents an exact formulation of the bending
theory of isotropic elastic Cosserat plates with P directors.
For the bending theory alone, the displacements of equation (4.10) may be expressed

in terms of the stress functions as
U;k = T ’a—U so +£a‘~|’s ),
e 3sab1 Wy 437)
U’; = U3 +nT63s

and since the theory is linear the extensional part may be superimposed.
The three dimensional strains of equation (4.12) in a similar manner become

Vap = C_.T{q),ag - U3 ’zﬂsl +%(81y\ll,yﬂ +£ﬁy\|”ya)}’
2%13 = C’Ti’.(q)m + eay"”y) + nT83 2 (438)
Y33 = M)393,

for the bending theory.

5. COMPARISONS AND CONCLUSIONS

As an illustration in the use of this theory the pure bending of a flat plate of uniform
thickness k, will now be analysed. Consider an elastic plate which is subjected to a stress
distribution in a manner similar to that specified in Section 90, of Love [21]. Recalling that
for a plane surface 2 = J{, the stresses throughout the plate may be taken as

" =0y, = Ea, 1?2 = 0,, = EBE, (5.1)

with all other stress components zero. In (5.1) x and f§ are constants, E is Young’s modulus
and the rectangular coordinates originating at the center of the plate are x,, x, and ¢.
By considering the resultants defined in Section 2, the only nonzero matrix resultants
throughout the plate are the constant

M, = oy, M,, = fr, (5.2)
where y is a P/2 x 1 matrix whose Nth term corresponds to the (2N — 1)th director and is
given by

P/2

Y= Z YNEN (5.3)
N=1

where

2E [h\2N*1
N = 2N+1(2) ., N=12...,P]2, (54)

It should be-noted that for a complete description of the stress conditions in the plate all
higher order moments must be included. However, since a discussion concerning the inverse
of an infinite matrix will not be entered into, P will be assumed even and finite throughout
this discussion and subsequent results will be examined with P tending to infinity.
Guided by elasticity theory and the basic reduced equations of either set (4.27), (4.28),
(4.30) and (4.31) or the alternative set (4.31), (4.32), (4.34) and (4.36) of the bending theory,
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the following values for the stress functions pertinent to this problem are suggested :

@ = 2C; +Cylaz Ha—(a, —a ) 'al, ey (5.3)
¥ =P¥ =0, (5.6}
%= C X +C, X% +o, (5.7}
8y = —2C,+Cya; 'alse, . {5.8)

In (5.5), (5.7) and (5.8), the constants C; and C, are determined through stress boundary
conditions, specified in (5.2), as

Cig; = ¥ B 'A-A"'B) (B lyu— A" yp), (5.9)
Coey = HB 'A—AT'B)Y (B lyf— A Yyx), (5.10)
where
A :d"“alﬂgla’{z, (S]])
B =os—a,.0;'al,, (5.12)

provided that A and B are nonsingular. Hence, upon utilizing {4.15) and substituting (5.5)
and {5.7) into (4.37), the displacements become

U* = 2C,X tTe, no sum on o, (5.13)
f= —C,X2—CyX2—2C, +C Ty 'alse, . (5.14)

Since the theory under discussion has been constructed in 2 manner which suggests its
cquivalence to elasticity theory, provided that the Maclaurin expansion converges, it
appears possible to compare this solution with its three dimensional counterpart in order to
identify some of the material coefficients. Comparisons of single director Cosserat solutions
with the corresponding results in the classical theory of elasticity have previously been
made, for coefficients pertaining to the pure bending of a Cosserat plate in [9], for combined
extension and bending coefficients in a circular cylindrical Cosserat shell in [7], and for
some of the extensional theory coefficients in [5].

The displacements for a rectangular plate bent by couples have been given in Love [21].
for example, as

UY = (e~ )X (&, {5.15)
UE = (B—va) X ,&, {5.16)
Ut = —a—vB) X3 — 4P —va) X3 —va+ B)E, (5.17)

where v is Poisson’s ratio and superscript E denotes elastic displacements. Comparing
(5.15) and (5.16) with (5.13) values for the constants ' and C, are

Cy = Ho—vh), (5.18)

Cy = HB—va). (5.19)
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By substituting these interpretations into (5.14) and comparing the resulting equation
with (5.17) 1t follows that

v

mﬁl . (520)

~ 1T o _
Uy i€ =

By implementation of equations (5.9) through (5.12) and (5.18) through (5.20) it can be
shown that

1—v
e +aq)E; = é—:%v, (5.21)

and
[ds—;z(iqulz]a1 = Zl—_‘;?)-’y (522)

Hence, the identification of certain combinations of the material coefficient matrices
involved in the bending theory has been established in (5.20), (5.21) and (5.22). It is of
interest to note that the contraction in thickness of a plate under pure bending conditions
is determined in this theory’s solution by incorporating two nonzero directors in the dis-
placement field while P tending to infinity is required for a description of the stress field

throughout the plate.
It should be noted that the first term in the matrix equations (5.21) and (5.22) is given by
%e(1,1yF A7s,1y = (1=V)D, (5.23)
and
d D (5.24)
o - o = vD, .
5(1.1) 2(1_\)) 1241, 1)
respectively, where
1 Eh3
D= - , 525
1= = 20— (5:23)

In the above as,1), %6(1,1)> %2q1,1y) and &;,(,;, denote the elements in the first row and
first column of the matrices a5, ¢, o7 and &, respectively. For the single director case
given in [9] their expressions for the material coefficients are exact since in that theory no
ay; exists; however, when viewed from the three dimensional theory of elasticity the theory
of an elastic Cosserat plate is an approximation. In addition the values given in (5.23) and
(5.24) suggest that a theory based on two directors would include an approximation to the
contraction effect.
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A6ctpakT—Ha ocHose paGoTel ['puHa ¥ 4pYTHX aBTOPOB MCCACAYETCH M30TEpMUYeckas UHOHHHUTEIUMA-
npHas Teopus uiruba wu3oTpomHbix nosepxHocre Koccepa ¢ aupektopamup. MatpuuHas 3anuch
APECTABIISET 3TY TEOPHIO CNIOCOBOM JIETKO MOABEPTAOLIMMES HOPCTbIM NpeobpazoBanusam. OrpaHnuuBas
TEOPHIO HAYAIBLHO TUIOCKHMHK TIOBEPXHOCTSMHM, OHA Pa3Le/sieTcs Ha 4acTh YIUIHHEHHMS u 4acTB u3ruba,
[MpumenseTca k Teopud w3rnba ABYXMepHasi maTpuuxas dopma Teopembl pasnoxedus Croxca-I'ems-
ronsua. [lonydaioTes npn 3TOM 4eTbipe auddepeHLnabHbIe YPABHEHNS B YACTHBIX NPOU3IBOAHBIX BTOPOIO
NOPSAKA B BbIPAXEHUAX HeTbipex (QyHKuui Hampsokernid. C noMowbo 3TUX QYHKUME BbIpaXaroTCa BCe
KHHEMATHYECKHE TEPEMEHHbIE, OCTATOUYHbIE HATPSKEHHUA W TaKME K€ HANPKEHHs BbICIIEIO MOPAAKA
DTa Teopus MPUMEHSAETCA K 4MCTOMY W3ruby ynpyro#t nnacTuHkm. [laeTcs cpaBHEHHE MEXAY XOpOLLo
coueTalolleics TEPEXMEPHONH TEOpUEH YNpyrocty.



