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ON THE THEORY OF ELASTIC PLATES
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Abstract-The isothermal infinitesimal bending theory of isotropic Cosserat surfaces with P directors is developed
based on the work of Green et al. Matrix notation presents this theory in a tractable and straightforward manner.
Upon restricting the theory to initially plane surfaces, the theory uncouples into extensional and bending portions
and a two dimensional matrix form of Stokes-Helmholtz decomposition theorem is applied to the bending
theory. Four second-order partial differential equations in terms of four matrix stress functions are thereby
obtained and all kinematic variables, stress resultants and higher order stress resultants are expressed in terms of
these stress functions. This theory is applied to the pure bending of an elastic plate and a comparison is made
with the three dimensional elasticity theory counterpart.

1. INTRODUCTION

SINCE the late 1950's there has been a revival of interest in techniques, the Cosserats [1J
being among the original proponents, in which any body with a preferred orientation may
be described by a position vector to a point in the body and another vector, called a director,
associated with each point, which gives each point in the body six degrees of freedom.
The director approach to the problem of describing an elastic continuum using two
dimensional parameters was reinstigated in 1958 by Ericksen and Truesdell's [2J multiple
director approach to the exact theory of rods and shells. Green, Naghdi and Wainwright
[3J developed a general theory of a Cosserat surface utilizing fully consistent dynamical
and thermodynamic principles of continuum mechanics and then considered nonlinear
elastic, isotropic nonlinear, and isotropic linear Cosserat surfaces. The restriction contained
in the Cosserat shell theory section of the previous paper, namely that of the director
remaining normal to the shell surface throughout its deformation, was removed by Green
and Naghdi [4]. In [5J the same authors discussed the linearized theory ofan elastic Cosserat
surface in relation to the theory of shells regarded as three dimensional bodies. The com­
patibility relations for a Cosserat surface were obtained by Crochet [6]. Naghdi [7J used
Cosserat surface theory to solve the torsion of a circular cylinder while Wenner [8J derived
the solution to the torsion of a cylindrical Cosserat shell. The linear theory of an elastic
Cosserat plate was derived by Green and Naghdi [9J who then solved the problem of the
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bending of an infinite plate with a circular hole using this theory. Excellent review articles
pertaining to the nonlinear theories of deformable surfaces are presented by Green and
Naghdi [10, II].

In several recent papers, which will be referenced extensively, Green, Laws and Naghdi
[12J and Green and Naghdi [13J obtained a general nonlinear, thermodynamical theory of
rods and shells using a Maclaurin series expansion for the kinematical parameters in terms
of an infinite number of directors. Following their derivation of the equations of motion.
with the help of invariance conditions under superposed rigid body motions, and their
derivation of constitutive equations, Green, Laws and Naghdi [12J proceeded to make
systematic approximations in order to recover the theory given by Green, Naghdi and
Wainwright [3J who utilized one director.

In Section 2 of this paper a summary of the nonlinear and linear kinematics as well as
the equations of motion of the theory of a Cosserat surface with P directors is presented.
The constitutive relations for an isothermal, linear, elastic plate which initially is homo­
geneous, free from curve and director forces, and in a state of rest, are derived from a free
energy function describing a holohedrally and transversely isotropic plate in Section 3.
Matrix notation is reverted to at this stage. After imposing the restrictions associated with
the assumption of rectangular Cartesian coordinates in Section 4, the uncoupled field
equations for the extension and bending theories are categorized prior to the application
of the two dimensional Stokes-Helmholtz decomposition theorem to the transverse
deflection theory. A simple and concise system of equations, governing four stress function
matrices from which all stress resultants and kinematical variables are obtained, is presented
for the bending theory. In Section 5, this system of equations is solved for the pure bending
of an elastic plate and a comparison between the solution for the bending problem and its
elastic counterpart is discussed.

Several three dimensional theories of plates are given in the literature, e.g. [14 161.
For example, A. I. Lure [14J writes a functional expression for the displacement field in
terms of the two dimensional gradient operator and the thickness coordinate. This ditTers
from the method used in the present paper where a power series expansion in terms of the
thickness coordinate is employed.

2. KINEMATICS AND EQUATIONS OF MOTION

Points of a three dimensional continuum h, will be defined by a convective coordinate
system (}J, (j2, (}3, and the position vector to a typical particle will be denoted by-i'

c*= r*(lP,Ij2,(}3,I) (2.11

The natural base vectors and their reciprocal set at points of the continuum at time I arc
denoted by gi and gi respectively, where the range is denoted by Latin indices having the
values I, 2, 3. Whe"iJever it is convenient 0 3 will be replaced by ~ and Greek indices will
denote the range of values I, 2. The notation is essentially that used in [3,9, 12, 13, 17. U~].

The parametric equation ~ = 0, defines a surface s, in space at time t, whose position
vector to any particle of s is designated by

r = ((I) 1, ()". I) = r*(O I , 0". 0, I).

"I Three dimensional space vectors will be denoled by" .. and matrices by boldface.
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The natural base vectors of the tangent plane of s and their reciprocal set are denoted by
ga and ga respectively, while the unit normal to s is g3 = g3. Some of the basic geometry
of the continuum b, and the surface s, which is embedded in b, will now be recalled, namely

~i r*'i;

gij ~i' ~j;

gij ~i. ~j;

au = gi' gj,

aU = gi . gj,
(2.3)

a = det au = det aap,

where raP = (.jl/a)eaP, eap is the two dimensional permutation symbol and ",;" denotes
partial differentiation with respect to 8i

• The connection coefficients of band s are denoted
by r~k and r~a respectively. Thus

(2.4)

where r;a are the Christoffel symbols of the second kind based on the metric aap, r~a = hila
are the coefficients of the second fundamental form, rja = b~ = - allAb Aa and na = O.
It should be noted that since the coordinate system is not normal convective,
r~a "" r}a(W,O, t). If!! = !!(8 1

, 82
, t) is any surface vector and !!a = !!a(81

, 82
, t) is any contra­

variant surface vector, then write

(2.5)

where from (2.4)

(2.6)

and "Ip" denotes covariant differentiation with respect to the surface coordinate 8P, based
on the metric aa!I'

The change of base from b to s will be denoted by

'j k _ ·k j _ s.k)J.i )J.'j - )J.j fl.i - Ui' (2.7)

where)J.;i and )J.ji' inverses of each other, are sometimes called shifters and are discussed, for
example, in [17J and [18J and £57 is the Kronecker delta. From (2.3) and (2.7) follows

and hence (2.8)

The shell concept may be developed by assuming that the continuum is bounded by
the surfacest

(ex < 0 < Ii),

t See Ref. [12] for further restrictions on these boundary surfaces.

(2.9)
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which are such that s lies entirely between them, and the surface

(2.10)

The position vector r* is now represented by a series expansion about the surface s, in the
form

I'

r*(OI, (p,~, t) = r(OI, (1 2, 1)+ I CYriN(81, fP, I),
V 1

(2111

where the vector functions riN are called the directors. It is assumed that the positive integer.
P is such that either the remainder of the series is zero for finite P or when P tends to
infinity the series converges. Although the formulation is primarily that of Green, Laws and
Naghdi [12J, only in the case when P tends to infinity the form given in [12J is recovered.
The value of P, which is the number of directors in the expansion (2.11), is arbitrary and the
question concerning the approximation when a remainder term in the Maclaurin series is
needed is considered to be beyond the scope of this paper. However, it is hoped that the
proposed theory may be able to shed some light on the question of approximations in the
theory of plates and shells.

Some of the basic kinematical results as derived in [3J and [12J will now be recorded.
From (2.3) and (2.11) it follows that

I'

g, = (!,+ I eriN",
v·= I

I'

g3 = I N~\ lriv
V=1

The shifters with the aid of (2.7) and (2.12) become

(212)

where, from (2.6)

and

I'

;i; = (j~ + I ('IdZ ;, '
N= 1

I'

.u{ = I N('i IdZ,
v·c 1

(2.13)

(2.14)

(2.15)

In the undeformed configuration the position vectors to a typical particle, denoted by
E*(()l, (P, ~), and to the particle on the surface S, obtained from the typical particle's
position by setting ~ = 0, denoted by E(()I, (F), are related through the expansion (211)
evaluated at time equal to zero. Thus

I'

E*(()l,()2,O = E(OI,02)+ I ('Qy({) 1, (j2),
V 1

(2.16)

where flv are the initial undeformed directors. Similar expressions to those contained in
(2.3)-(2.8) and (212)(2.15), hold in the undeformed configuration with majuscules
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replacing their miniscule counterparts, /l/ replacing fl/, t\ replacing r~a and ":a"
replacing" ;a".

The position vectors in the deformed and undeformed configurations are related to the
displacement vectors by

where
r* = E*+ lj*, r = E+ lj, (2.17)

lj* = U*iQ;, lj = Ui,:L (2.18)

are the three dimensional and surface displacements respectively. From (2.11), (2.16),
(2.17) and (2.18)

or in component form
p

U*'/l/ = uj+ L ~N()~,
N~I

where

(2.19)

(2.20)

~N = ()~dj = 41'1-1)1'1'

As in [3] the extended definitions

(2.21 )

as well as

(2.22)

(2.23)

(2.24)

are introduced. It is of interest to note that although 8Ni transforms as the components of a
covariant vector, it is not associated with a surface vector.

Attention is now restricted to the kinematical theory of infinitesimal displacements.
The displacement of the surface s and the director displacements are given by (2.18)z and
(2.21), respectively. Upon linearization of(2.21) through (2.24) in a manner similar to Green,
Naghdi and Wainwright [3] the following linearized kinematical results are obtained

XNfJa = §N,a' dfJ + lj,fJ . 1)N,a

= ()NfJ:a+Ui:fJD},,:a,

XN3a ~N,a.d3-U3:ydY·1)N,a

= ()N3:, U3 :yDN :1>.'

2eafJ = dl>.· lj,fJ +dp . lj"

= U a :p + UfJ :1>.'

(2.25)

(2.26)

(2.27)

(2.28)

In addition the two forms of the director displacement ()Ni and (5Ni are related through

()Na = /5,,1>. - (Up :aDNfJ + U 3 :aDN 3),

(),'O = ()!'o+U 3 :PDNP '
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Expressions for the three dimensional strains in terms of surface and director displace­
ment gradients may be derived utilizing (2.19) provided that the differentiated series either
exhibits equality for finite P or converges uniformly when P tends to infinity. The con
tinuum's linear strain components are given by

which upon using (2.5), (2.7), (2.17). (2.19) and (2.29), become

I'

" - ilk" N(' l;)"k'iJ3 -,..3 1... . "
V 1

(2.30)

(2.31 )

(2.32)

A simplification of the kinematics occurs when the following identification of the
initial directors is made

1),'1 = Q for N > I. (2.33)

This choice corresponds to describing the initial configuration by families of parallel
surfaces. Thus the convective coordinates Oi are normal coordinates in the initial con­
figuration and the shell is of uniform thickness in this configuration. With this interpretation
the undeformed configuration's shifters from (2.1 3) and (2.33), become

i1:f = 0, i1~} = I

which, along with (2.33). reduce the linear kinematical relations (2.20), (2.25) (2.28) to
I'

U*J = UJ + I (\S,~:
N= 1

(2.34)

(2.35)

(2.36)

(2.3n

(2.38)

Three dimensional strains (2.30)(2.32), are also reduced by (2.33) and (2.34) to

I'

2~"fJ = 2e,fJ+ I (N(JN,:fl+J VfJ :')
:V 1

I'

2)"3 U 3 :,+ I (~tV;)tVJ:,+NC 1l)N,-NB~~N8N)'
v=!

I'

" N "tV·· 1""/.13 == L ':, °1'lJ'
N=1

(2.39)
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Returning to the consideration of the nonlinear theory, the equations of motion for the
shell may be taken as those given in [12, 13]. The same form of these equations may also
be obtained by integrating the equations of motion across the thickness, both prior to and
following multiplication by powers of the thickness coordinate. In order to record these
equations for future use the following definitions and notations are required. Let !! be
the outward unit normal in the surface s, to a curve of the form (2.10) with e= 0, and Ii be
the stress vectors for each coordinate surface per unit area of the deformed body, with
shifted stress tensor components given by

(2.40)

where (Jii is, in general, a nonsymmetric tensor related to the three dimensional symmetric
contravariant stress tensort tii, through

The definitions of stress resultants are given by

Na = Niaa. = jfJ IIta d!'
_ _! r"_ S,

·a

(2.4 I)

(2.42)

(2.43)

m = m i n. = jfJ IIN!'N lt3 df_ N N"I:t ~ S ... ':l'

a

pi = pFiQj = f p*jJ.(f*-f*)de+p,

pLN = pL~Qi = f p*J.leN(f* - f*) de +iN,

where

(2.44)

(2.45)

(2.46)

(2.48)

(2.47)p = piQi = J.l13 j: Ii,
~ <; e>:

iN = l~Qi J.l~N131~ = I>.
<;=e>:

In the preceding equations, f* is the body force vector, f* is the acceleration which contains
both the surface and all director accelerations and p* is the density.

Thus, in terms of the definitions (2.42)-(2.48) the equations of motion for the shell
may be written as

(2.49)

(2.50)

t This interpretation of t ji agrees with Truesdell and Toupin's [19], Section 203, but not with Green et a!.'s.
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P J'

(1, x f'j' + L dNn X llf~ + L fiN X '!iN = Q.
.V= 1 1'1= I

(2.51 )

The scalar forms of the equations of motion (2.49) and (2.50) utilizing (2.5) and (2.42) to
(2.46) are

(252)

(2.53)

while the scalar form of (2.51), using (2.14), (2.42), (2.43) and (2.44) along with the properties
of cross-products between surface base vectors becomes

and

where

p p

N 3,+ L (d'!.Jm~-d~mN)+ L (dN;yL'V1.~i·-d~;,MF!) = 0,
1'1=1 1'1=1

p

N'fJ' = NfJ,- L (dkM'tl + d~mN)'
1'1=1

(2.54\

(2.55)

(2.56)

3. CONSTITUTIVE EQUATIONS FOR A LINEAR ISOTROPIC ELASTIC
PLATE

Attention is now restricted to the isothermal infinitesimal deformations of an elastic
Cosserat plate with P directors, which initially is homogeneous, free from all curve and
director forces and in a state of rest. However, the constitutive equations to be derived in
this section may be applied to thin shells if all terms of O(h/R), h being the thickness and R

the smallest radius of curvature, are neglected. Further discussions of this property have
been given by Green and Naghdi [5]. With initial directors as assumed in equation (2.33),
the Helmholtz free energy should include terms involving D 1, :/1 which is the negative of
the initial coefficients of the second fundamental form BfJ ,. If, however, the initial surface s is
assumed to be a plane, the value of all kinematical variables at time t = 0 is zero. For the
above reasons it is sufficient for the Helmholtz free energy per unit mass PoA. to be expressed
as a quadratic function of e,/i, XNi, and ()Ni, where Po is the density per unit area of the
initially undeformed plate. Hence the free energy

(3.11
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may be written as
p p

PoA = IC>PYbC>pCyb+ L zclfl/XN>pXMyb+ L 3C ,rb
C>pXNyb

N,M=I N=I

p p p

+ L ICr/~XN3>XMPY+ L ZCr/YC>P(jNy+ L 3 C f!
Y
C>pXN3Y

N,M=I N~I N~I

p p p

+ L 4Cr/~(jN>XMPY+ L ICr/M(jN>(jMP+ L ZCf!IlJXN3>XM3P
N,M= I N,M= I N,M= I

p p p

+ L 3 C r/M(jN>XM3P + L 4 C r/C>P(jN3 + L SCf!MXN>P(jM3
N,M= I N= I N,M= I

941

+
p p p

L ICNM(jN>(jM3+ L ZCNM XN3>(jM3+ L C NM b N3 (jM3,
N,M= I N,M= 1 N,M= I

(3,2)

(3.3)

where the coefficients are constants which satisfy symmetry conditions similar to those
given by Green, Naghdi and Wainwright [3]. The plate is now assumed to be isotropic
with a center of symmetry and thus all coefficients of odd order must vanish, In addition,
remaining coefficients must be homogeneous, linear functions of products of A>P. In order
to imitate the symmetries associated with a plate which is transversely isotropic with
respect to the normal to the surface S, the free energy must remain invariant under the
transformations

bN> --->( -It(jN>>

(jN3 --->(_l)N+l(jN3'

U3 --->-U 3 ·

For ease in the further development of this theory, matrix notation is now introduced
and, in what follows, matrices will be designated by boldface. The kinematical variables
(jNi, XNi> are now decomposed into P/2 x 1 matrices, where P is an even integer, in the follow­
ing manner. Kinematic quantities which involve the odd values of (jN> and even values of
(jN3 will be designated simply by «'ii and Xi>; that is

«'i~ = ((jt>, (j3>' (js>, ... , (j(P-1»)'

«'if = ((jZ3,(j43,(j63,···,bp3~
(3.4)

and kinematic quantities which involve the even values of b N> and odd values of (jN3 will
be denoted by gi and Xi>; namely

X~p = (xz>p, X4>P, X6>P,"" Xp>p),

xL = (XI3" X 33 >, XS3»"" X(p-I)3»'

(3.5)
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In the above superscript T indicates the transpose and P in (2.11) is restricted to an even
integer so that i)i and ~i have the same number of elements. However, only a slight modifica·
tion is needed in what follows if one wishes to consider P as an odd integer. Imposing the
restriction (3.3), as well as the condition of holohedral isotropy, on (3.2) the algebraic
expression for the free energy may be written as the sum of two terms: one which represents
the transverse deflection or bending theory PoA', involving the odd values of and even
values of 6NJ , and the other portion which represents the generalized plane stress
extensional theory PoA, involving the even values of ()v, and odd values of (i, Thus the
free energy may be expressed as

where

and

PoA' = tA,Pi);CX 3i)P +~rcx4i)3

+tx~i[cxsA'li Ai" +cx6 A':AP,j + cx 7A '"AliY]X)",

+ tA 'liX~JX8XJp + AaliX;;fl12i)3 + AaPi);'CX 13XJP,

13.7)

PoA = MalAaliAi" + az(A'iAIi" + A'"A/i")]e,lie;" + tAaP~;~J~P +t~IP4~J

+ l-GT[R AaPA,"+R AaYAli"+R A,X"APY]-G .+1AaP-GT R ii..+ 4aPe RT~7"'ap I'S 1'6 1'7 "'i" 7 "'3aI'8.W "apl'9 3

+ eXli[~{oA'/iAl" + ~L (A'1A/i" + A"'A/iYl]ii.y,j + A,Pii.;PP1Z83

+A'/i~;~l.'ii.31i' (38)

The material coefficient matrices ~9'~10,P11 are P/2x I matrices,cxIz = ~12,CXrJ ~~ ~13

and all other material coefficients are P/2 x P/2 symmetric matrices. Since the free energy
is positive definite these material coefficient matrices have further restrictions. It is easily
shown that the inverse of certain material coefficient matrices, which are used, exist.

The bending and extensional constitutive equations may be derived from (3.6), (3.7;
and (3.8) by using partial derivatives of the free energy equivalent to those given by Green,
Laws and Naghdi [12]. Use will be made of the notation exemplified by 0o,A' as indicating
a P/2 x I matrix obtained by taking the partial derivative of the free energy with respect to
each 6,'1" N = I, 3, 5, ... , P - I. Thus the constitutive relations are given byt

a ~ A' A,1i s:: + A,xli '"m = PoOo, = CX3Up CXtJ"'3/f,

3 ~ A' s:: + AaP Tm = PoGOj = CX4U3 CX 1ZX,xli,

M,li = Poo"",A' = [cxsAaliA;'''+CXbA'iA/J,'+CX7A'''AliY]Xy,,+Aalicx1zi)3'

M h ~ A' A,li 'A/!a...Ts::.l' =POO"" = CX8X31i-t- ~1.Jup,

and

N'li, = PoOe>I,A = [a,A'liA/"+a2(A'lAIi"+A"jA/!i')]ey,;

+A'/.iP~~3 +[~roA'1i AY" + PL(A'YAP"+ A,bA/.i')]X;'b'

t By the notation lee"~ it is understood to mean i«\", + <\",). since eoll is symmetric.

(39)

LUO)

C:U I)

(3.12)

(313)
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Poo.,A = P4 'l>3 + A"Pe"pIJ9 +A"PIJT2i "P'

Poox«pA = [lJsA"PAy<l +1J6A"YAP<l + 1J7A"<lAP1']iY<l+ [lJlOA"PAy<l

+ 1111 (AY" AOP + AYPAOo:))eY<l + A"PIJ12'l>3'

1\13" PoOx,3 = A"PIJ8i3P +AP"IJL'l>p.

943

(3.14)

(3.15)

(3.16)

(3.17)

The stress resultant P/2 x 1 matrices in (3.9)-(3.17), recalling the renumbering given
by (3.4) and (3.5), have terms consistent with the interpretation of the kinematical matrix
with which each partial derivative of the free energy was taken. It should be noted that
because of the choice of initial directors and since a plane surface is being considered, the
equations of motion (2.54) and (2.56) specify that

(3.18)

and hence the constitutive equation (3.13) may be utilized to describe the symmetric N"P.

4. DECOMPOSITION OF BENDING THEORY

The basic equations of the linear theory of an elastic Cosserat plate with P directors
under static loading are now recorded in matrix notation. The kinematical relations for a
plate will now be referred to rectangular Cartesian coordinates and are obtained from the
equations contained in Section 2 by setting

B~ = o. (4.1 )

Using standard procedures, for example by replacing 4N and b~ to the first order with
I2N and B; respectively, the equations of motion may be reduced to the linear case, from
which the equations of equilibrium referred to rectangular Cartesian coordinates follow.
Similarly, the constitutive equations of Section 3 may be written in rectangular Cartesian
coordinates by the use of (4.1).

Converting the kinematic and equilibrium equations into matrix form by using the
matrix interpretations of the variables given in the previous section, it is observed that the
field equations uncouple into those for generalized plane stress and those for transverse
deflection. At this point it is considered instructive, and for ease of future use, to collect
all pertinent equations into the previously mentioned two categories and to list them in the
following way.

(a) Extensional theory

2e"p = V"'li + UIJ,,,,

~i = 'l>i'
(4.2)
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N/Jq " +PI! = 0,

Mi", + Ii liIi = 0, (4.3)

N'II = N/h ;

N/i, = iXl6apeyy + 2iXze,/J + 6,pP~SJ + <>,/iPlo x", + 2pLx(,p),

iii, = PJS,+P1JX3"

~ -. T ~

ffiJ = P4c)J+e,·"P9+P12Xy;'_

M>/J = b,pPsxn + P6X,P + P7Xp, + 6,/ie",PlO + 2e,pPII + ()'PPI2&J,

M.h = PSX3,+ PLo,.
(b) Bending theory

~a = (), V 3 _;:\.

~J = °3 ,

X,p = X(,'PI +XI,PI'

1 - - 1 'X(a/JJ = Z(O"p+O/h,) = Z(O,,,p+O/i,a)- V3"pEl,

X raP] = 1{~,,{! - ~P ,q) = ~(()"p - Op ,,),

X.,,=OJ";

Mia",+li-ffi i = O.

N3x--m~'E\ = 0:

ffiJ ct4()J +ctfZx),.!,

M(,{i) baP 5X ",. + [ctt) +ct 7]X(,/3l +baP1203,

M[>/il (ctf) - ct 7)X[zPl'

1\1.1, ctgXJy-j-cxi'.,o,:

(4.4)

(4.5)

(4.6)

(4.7)

where the notation EN has been incorporated to signify a P/2 x I matrix, every term of which
is zero, except the Nth, which is unity. Also in the above equations

(4.8)

where

(4.9)

and Ii and Ii are surface moment P/2 x I matrices consistent with the above separation.
The three dimensional displacement field given by (2.35) with B;' = 0 may then be

calculated from

U; = ljz+~Tl),+'1r6"

U~ = UJ+'1T01+~r63'
(4.10)
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(4.11)

(4.12)

~T = (~,~3,~5, ,~P-l),

1{ = (e, ~4, ~6, , ~P).

Again with the understanding discussed previously the three dimensional strains may
be derived from (2.30}--(2.32) as

Y~P = e~p+~Tx(~p)+l{X(~p),

2Y~3 = ~:30~+1{03 ,oc+~T~3 ,~+'I);3~'"

1'33 = '1):3°3 +~:3&3'

All further considerations are restricted to the infinitesimal bending of an isotropic
plate which is in equilibrium. In a manner similar to that of Green and Naghdi [9], the
Stokes-Helmholtz decomposition theorem is applied, in its two dimensional form, by
expressing Ooc as

O~ = q>, "+e"p'!J, p.

From (4.5) and (4.13) it follows that

where

Substituting (4.14) into (4.5) then

X(~P) = X'afJ +i(e"yv,yp +ep,V",,),

x[ocPl = i(eOCY'!J,yp - epyV,yoc) = ieocfJ'~~V'

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

where "fl" = '''yy'' is the two dimensional Laplacian operator. Expressions for the con­
stitutive equations in terms of the P/2 x 1 matrix stress functions q>, V, 1, and the P/2 xl
matrix director displacement 03 are obtained by substituting (4.13), (4.16) and (4.17) into
(4.7), thus

rn" = 1X3(q>,oc+eocpv,p)+1X1303'~' (4.18)

rn3 = 1X403 +lXfzflX, (4.19)

M("p) = IXs!J"pflX +IXIZ!J"p03 +(1X6 +1X7){X,,,P +i(e"yV,yp +efJ,V'y,,)}, (4.20)

M[ocPl = ieocfJ(1X 6 - 1X 7)fl'!J, (4.21)

M 30c = 1X803,,,+lXf3(q>,oc+e~fJ'!J'/i)' (4.22)

Before substituting these stress resultants into the equilibrium equations (4.6) the Stokes­
Helmholtz decomposition is applied to I" so that

(4.23)

Substituting (4.20), (4.21), (4.23) and (4.18) into the equilibrium equation (4.6)z, of the
form

Mocp,p+I"-rn,, = 0, (4.24)
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(4.25)

(4.26)

Equations (4.25) are the Cauchy-Riemann conditions of the bracketed terms and hence
these terms must be harmonic. Using a technique similar to that described in Green and
Naghdi [9J the bracketed harmonic terms may, without loss in completeness, be taken to
be equal to zero, that is

(4.27)

cx6Ll\jl-CX3\j1 +g = O. (4.2Xl

Upon substituting (4.22) and (4.19) into the equilibrium equation (4.6b, of the form

(4.29i

it follows that

(4.30)

while, by substituting (4.6)., into (4.6)1 and utilizing (4.18), yields

£f[CX3Ll<p +cx 13Ll03J + PI = O.

The basic equations governing <p, X, 03 and \jI are (4.27), (4.28), (4.30) and (4.31) and all other
quantities are then determinable from (4.13) through (4.22).

Alternative forms of the basic equations may be obtained as follows. Eliminating X
from between (4.27) and (4.30) it follows that

{CXSLl-CX4+cxf2CX'l(CX12 -C(13)}03 + {cxLLl-cxf2CX lcx:d<P+cxf2CX-1f+l, = O. (4.32)

Since in (4.28) CX 3 and CX6 are square, real, symmetric and CX 6 is positive definite, then from
standard reductions of simultaneous quadratic forms, e.g. Perlis [20J, and with

\jI = P'I', (4.33)

equation (4.28) may be written in the form

Ll'l' - A. 'I' +G = O. (4.34)

In (4.33) and (4.34), 1 is the identity matrix, P is a real nonsingular matrix independent of
Oland (}2 and A. is dia. {AI' ... , Apd where the AN are the characteristic roots of the poly­
nomial equation

det(Acx6-c(3) = O.

Eliminating X from (4.15) and (4.27), results in

(4.35)

(4.36)

Hence, the alternative set of basic equations is (4.31), (4.32), (4.34) and (4.36). This decom­
position has been made without prior approximations in the constitutive equations, and
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(4.38)

(4.37)
u! = u3+T{03,

and since the theory is linear the extensional part may be superimposed.
The three dimensional strains of equation (4.12) in a similar manner become

Yap = ~T{cp"p_ U3"~1 +t(Cay\j!,yp+Cpy\j!,ya)},

2Ya3 = ~;3(cp,,+Cay\j!,y)+TIT03'"

Y33 = TI;303'

thus either of the basic sets of equations represents an exact formulation of the bending
theory of isotropic elastic Cosserat plates with P directors.

For the bending theory alone, the displacements of equation (4.10) may be expressed
in terms of the stress functions as

U: = ~T(CP,a - U3,J'l +Cay\j!,y),

for the bending theory.

5. COMPARISONS AND CONCLUSIONS

As an illustration in the use of this theory the pure bending of a flat plate of uniform
thickness h, will now be analysed. Consider an elastic plate which is subjected to a stress
distribution in a manner similar to that specified in Section 90, of Love [21]. Recalling that
for a plane surface f1/ = c5{, the stresses throughout the plate may be taken as

[22 = 0'22 = Ef3c;, (5.1)

with all other stress components zero. In (5.1) ex and f3 are constants, E is Young's modulus
and the rectangular coordinates originating at the center of the plate are Xl' X2 and C;.
By considering the resultants defined in Section 2, the only nonzero matrix resultants
throughout the plate are the constant

M22 = f3y, (5.2)

where'Y is a P/2 x 1 matrix whose Nth term corresponds to the (2N -l)th director and is
given by

P/2

'Y = I YNEN,
N=l

(5.3)

where

_~(~)2N+1
YN - 2N + 1 2 ' N = 1, 2, ... , P/2, (5.4)

It should be noted that for a complete description of the stress conditions in the plate all
higher order moments must be included. However, since a discussion concerning the inverse
of an infinite matrix will not be entered into, P will be assumed even and finite throughout
this discussion and subsequent results will be examined with P tending to infinity.

Guided by elasticity theory and the basic reduced equations of either set (4.27), (4.28),
(4.30) and (4.31) or the alternative set (4.31), (4.32), (4.34) and (4.36) of the bending theory,
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the following values for the stress functions pertinent to this problem are suggested:

2{C C -I{ 1 rq> "I +2YL3 CX-(CX 12 -CX 13 )tx4 CX 12}E1,

'" P'I' = 0,

(5.5)

(5.6l

X CIXiE I +C2X~El +q>,

03 -2(Cl+C2)CX41cxr2EI' (5.8)

In (5.5), (5.7) and (5.8), the constants C 1 and C2 are determined through stress boundary
conditions, specified in (5.2), as

where

C1E I = i{B-1A-A-1B)-I(B-Iya A'-lyfJ),

C2E1 =i{B-IA A-1B)-1(B-1yf)-A lya),

(5.9)

(5.10)

(5.11)

(5.12)

provided that A and Bare nonsingular. Hence, upon utilizing (4.15) and substituting (5.5)
and (5.7) into (4.37), the displacements become

no sum on a, (5.13 )

(5.14)

Since the theory under discussion has been constructed in a manner which suggests its
equivalence to elasticity theory, provided that the Maclaurin expansion converges, it
appears possible to compare this solution with its three dimensional counterpart in order to
identify some of the material coefficients. Comparisons of single director Cosserat solutions
with the corresponding results in the classical theory of elasticity have previously been
made, for coefficients pertaining to the pure bending of a Cosserat plate in [9J, for combined
extension and bending coefficients in a circular cylindrical Cosserat shell in [7J, and for
some of the extensional theory coefficients in [5].

The displacements for a rectangular plate bent by couples have been given in Love [21],
for example, as

uf (a-vli)X

ui (fj - va)X1~'

uf -i{a- vfJ)Xi - -¥fj - va)X~ --tv{a + f»e,

(5.15)

(5.16)

(5.1 7)

where v is Poisson's ratio and superscript E denotes elastic displacements. Comparing
(5.15) and (5.16) with (5.l3) values for the constants C 1 and C2 are

(5.18)

(5.19)
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(5.20)

By substituting these interpretations into (5.14) and comparing the resulting equation
with (5.17) it follows that

-1 T V
(%4 (%12&1 = 2(1- V{l'

By implementation of equations (5.9) through (5.12) and (5.18) through (5.20) it can be
shown that

(5.21 )

and

[(%5 - 2(1~ v) (%12}1 = (1 ~ v2) y. (5.22)

Hence, the identification of certain combinations of the material coefficient matrices
involved in the bending theory has been established in (5.20), (5.21) and (5.22). It is of
interest to note that the contraction in thickness of a plate under pure bending conditions
is determined in this theory's solution by incorporating two nonzero directors in the dis­
placement field while P tending to infinity is required for a description of the stress field
throughout the plate.

It should be noted that the first term in the matrix equations (5.21) and (5.22) is given by

and

respectively, where

IX6(1.1) + IX7(l,1j = (1- v)D,

1 Eh 3

D = (l-V2)Y1 = 12(1 ~V2)"

(5.23)

(5.24)

(5.25)

In the above IX5(l,1), IX6(1,1), IX7(1,l) and IXI2(l.1j denote the elements in the first row and
first column of the matrices (%5' (%6, (%7 and (%12 respectively. For the single director case
given in [9] their expressions for the material coefficients are exact since in that theory no
IXl2 exists; however, when viewed from the three dimensional theory of elasticity the theory
of an elastic Cosserat plate is an approximation. In addition the values given in (5.23) and
(5.24) suggest that a theory based on two directors would include an approximation to the
contraction effect.
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A6CTpaKT-Ha OCHOBe pa60Tbi Ipf1Ha VI .L\pyrVlx aBTopOB I1CCne.L\yeTC51 H30TepMI1'1eCKa51 I1HqJl1HI1Te3V1Ma­
JIbHa51 TeOpl151 113rl16a 1130TP0rIHbIX rIoBepxHocTdl Kocccpa C .L\l1pCKTopaMHp. MaTpl1'1Ha51 3anl1Ch
npc,L\CTaBJJ51CT 3Ty Tcopmo cnoco6oM JIerKO nO,L\BCpralOll.lI1MC51 1l0PCTbiM rrpco6pa30BaHH51M. OrpaHI1'1I1Ba51
Teopl1lO Ha'laJJbHO rIJJOCKHMH nOBepXHOCT51MH, OHa pa3ACJJ51CTC51 Ha '1aCTb y,L\JJHHCHH51 VI 'faCTB 113rH6a,
npHMCH51CTC51 K TCOPI1H 111rl16a ,L\ByxMcpHa51 MaTpl1'1Ha51 q,opMa TCOPCMbI pa1JJO)l(CIIH51 CTOKCa-IeJJb­
rOJJbl.\a. DOJJY'laIOTC51 npH HOM '1CThIPC AHq,q,cpeHUl1aJlbHbIC ypaBHCHI151 B yacTHblX npOIHBOL\HbIX BToporo
nOp51L\Ka B Bblpa)l(CHI151X '1CTblpCX <PYHKI.\HH lIanp51)l(CHI1H. C nOMOll.lhlO )THX <PYHKUI1H Bblpa)l(alOTC51 Bce
KHHCMaTH'IeCKHC nepcMeHHblC, OCTaTO'lHble Harrp51)l(eHH51 H TaKI1C )I(e Hanp51)l(CHI151 BblCllIero nop51AKa
3Ta TCOpH51 npI1MCH51CrC51 K '1I1CTOMy 113rH6y yrrpyroH nJlaCTI1HKM. ,l],acTC51 cpaBHCHHC MC)I(,L\y XOPOIllO
CO'leTalOll.lcHC51 TepeXMepllOH rCOpl1CH ynpyroCTI1.


